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Thermal-response time of superconducting transition-edge
microcalorimeters

K. D. Irwin,a) G. C. Hilton, D. A. Wollman, and John M. Martinis
National Institute of Standards and Technology, Boulder, Colorado 80303

~Received 26 September 1997; accepted for publication 18 January 1998!

We investigate limits on the thermal-response time of superconducting transition-edge
microcalorimeters. For operation at 0.1 K, we show that the lower limit on the response time of a
superconducting transition-edge microcalorimeter is of order 1ms due to the heat diffusion time,
electrical instabilities, the amplifier noise, and the critical current of the superconducting film. The
response time is not limited by self-heating effects and is independent of the intended photon
energy. However, design constraints associated with the inductance of the bias circuit make it
difficult to achieve the fastest response times for devices with heat capacities high enough for x-ray
and gamma-ray detection.@S0021-8979~98!07308-3#
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I. INTRODUCTION

Superconducting transition-edge sensor~TES! micro-
calorimeters are promising spectroscopic detectors for p
tons from the infrared to gamma rays. Excellent energy re
lution has been achieved with these devices. Howe
applications such as x-ray microanalysis, optical astrono
and astronomical observations of bright x-ray sources req
faster response times and count rates than have
achieved to date without sacrificing energy resolution. Wh
the theoretically achievable energy resolution has been
studied,1,2 the theoretically achievable response time has
ceived less attention. In this article we discuss the low
limits on the response time imposed by the physics of
TES and by the bias circuit.

A microcalorimeter consists of a thermometer, an a
sorber with a heat capacityC, and a thermal conductanceG
to a heat bath. When a photon interacts with the absorber
deposited energy is thermalized and measured as a tem
ture rise. After the event, the temperature of the thermom
returns to the equilibrium temperature with a response t
t. Microcalorimeters are typically operated at low tempe
tures (T;0.1 K) where materials have small heat capacit
~leading to a large temperature rise!, thermal noise source
are small, and sensitive thermometers are available. M
microcalorimeters have been fabricated using se
conductor-thermistor thermometers read out with field-eff
transistors.1 The relatively low sensitivity of a thermistor re
quires the use of an absorber with a low specific heat suc
semiconductors, semimetals and superconductors.

TES thermometers are superconducting thin films bia
within the transition from the superconducting to the norm
state. In this region the resistance of the film is extrem
sensitive to the temperature. TES thermometers are lea
candidates for use in fast microcalorimeters since their s
sitivity allows the use of normal-metal absorbers ev
though normal metals have a high specific heat and co
quently small temperature changes. Normal-metal absor

a!Electronic mail: irwin@boulder.nist.gov
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are advantageous because they thermalize and uniformly
fuse energy more quickly and completely than semicond
tors, semimetals, and superconductors.3,4

TES microcalorimeters have achieved an energy res
tion of 7.260.4 eV full width at half maximum~FWHM! for
6 keV x rays with a response time of approximately 200ms.5

TES microcalorimeters designed to operate at optical pho
energies have achieved an energy resolution of 0.2
FWHM for 4 eV heat pulses, with a response time of 8ms.6

We show in this article that the best achievable respo
time for operation at 0.1 K is of order 1ms and is in principle
independent of photon energy, although the design c
straints are more challenging at higher energies.

We begin by discussing the bias circuit for TES micr
calorimeters and the effect of negative electrothermal fe
back. We then consider the factors which constrain the
sponse time of TES microcalorimeters, includin
thermalization and diffusion times, the requirement of ele
trical stability, amplifier noise, the critical current of the s
perconductor, and self-heating effects.

II. TES BIAS AND ELECTROTHERMAL FEEDBACK

In order to discuss constraints on the response time
TES microcalorimeters, we must first discuss the TES b
circuit. The bias source used with a TES microcalorime
can be anything from a perfect current bias to a perfect v
age bias. Throughout this article we assume a perfect vol
source. As will be shown, a voltage source leads to a fa
detector response than high impedance sources and yie
minimum response time close to the heat diffusion time. W
consider a circuit in which a voltage bias is applied to
series arrangement of the TES and the input coil of a su
conducting quantum interference device~SQUID! amplifier
which is used to measure the current through the sen
When a photon is absorbed by the microcalorimeter, the t
perature of the TES increases, its resistance increases
current flowing through it decreases, and this decreas
sensed by the SQUID. Recent developments such as se
8
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array dc SQUIDs allow operation at 10–100 MH
bandwidth,7 making fast response times possible.

The bias circuit directly influences the response time
TES microcalorimeters through electrothermal feedba
Negative electrothermal feedback results when the TES
voltage biased and the heat bath is cooled to well below
transition temperature. Electrothermal feedback causes
film to self-regulate its temperature within the region of rap
resistance change associated with the transition.2,8 Self-
regulation results because as the film cools, its resista
drops, and the Joule heating,V2/R, increases. Joule heatin
thus provides negative feedback which tends to raise
temperature, and a stable equilibrium is established w
Joule heating matches the heat loss into the bath. S
regulation can occur with a characteristic time constant m
shorter than the naturalC/G time constant. For a voltage
biased sensor, the effective response time is9

teff5
C/G

11af/n
. ~1!

Heref[12(Tb /T0)n is a measure of how far the detect
is biased above the bath temperature,Tb is the temperature
of the heat bath,T0 is the equilibrium temperature of th
sensor, the logarithmic sensitivitya[d log R/d log T at con-
stantV is a unitless measure of the sharpness of the su
conducting transition, and the thermal-conductance expo
n is a number~typically about 4! that depends on the dom
nant thermal impedance between the heat bath and the
trons in the superconducting film. Sincea can be of order
1000 for transition-edge thermometers, the effective
sponse time can be two orders of magnitude shorter than
C/G time constant. Throughout this paper, operation in
strong-feedback limit will be assumed, wherea@n/f.

III. THERMALIZATION AND DIFFUSION

In this section, we discuss the limitations placed on
response time of a TES microcalorimeter by the rate of th
malization of heat in the absorber and diffusion of he
within the absorber and TES. The thermalization time is
time required for energy deposited in the absorber to rela
a Fermi–Dirac distribution in the electron system. The d
fusion time is the time required for heat in the electron s
tem to diffuse spatially. As will be discussed, there are d
ferent constraints on the diffusion times in the absorber
the TES thermometer.

We first consider the effect of the thermalization time
the TES microcalorimeter response time. When a hi
energy photon interacts in a normal-metal absorber, it ej
a high-energy inner-core electron which then forms a lo
hot spot by electron–electron and electron–phonon inte
tions. At low temperatures, inelastic electron–electron in
actions are thought to dominate the thermalization proc
Unfortunately, inelastic rates in polycrystalline metal films
low temperature (T;0.1 K) and low sheet resistance (T
,1 V) are not fully understood. Experimental values f
electron–electron interaction times~and thus thermalization
times! under these conditions tend to be nanoseconds,
nificantly faster than theoretical computations.10–12It will be
f
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assumed in this article that thermalization times are fast c
pared to other time scales in the detector~such as heat dif-
fusion time in the thermometer andC/G times! and can be
neglected.

The diffusion times of the TES microcalorimeter ca
limit the response time. The diffusion time in both the a
sorber and the microcalorimeter are important. We cons
the diffusion time in the absorber first. If the diffusion tim
in the absorber is too slow, variations in the interaction p
sition of the photon in the absorber will cause variations
the shape of the leading edge of the pulse. Fortunately,
diffusion time in the absorber can be made extremely fa
Diffusion times are dependent on both the material and
geometry; in the general case they must be computed
merically. For a simple geometry, an estimate of the dif
sion time can be made from the diffusivity,D5v f l̄ , where
v f is the Fermi velocity andl̄ is the electron mean-free pat
of the metal. The characteristic diffusion time associa
with a length scaleL is tdiff5L2/D. For example, an ab
sorber for an x-ray microcalorimeter might consist of a go
film with dimensions 250mm3250mm35 mm, for which a
mean-free path of about 2mm would be expected in a high
quality film. With these absorber parameters, the calcula
diffusion time in the absorber is about 22 ns. A detec
thermal response time of order 1ms should thus be achiev
able without significant variations in pulse shape. It sho
be noted that even if a detector has significant pulse sh
variation due to incident photon position, it may be possi
to deconvolute the position of the interaction from the ene
so as not to sacrifice energy resolution. This procedure
be as simple as correcting the pulse energy with a rise t
measurement, or it may require a more complicated mu
variate fit.

The heat diffusion time in a TES thermometer can a
limit the detector response time. Unfortunately, it is gen
ally not possible to make the diffusion times in the thermo
eter as fast as diffusion times in the absorber due to e
neering constraints on the resistance of the TES. Altho
slow diffusion times in the thermometer do not lead to pu
shape variations, they can nonetheless lead to signifi
degradation in energy resolution. Because information is
at frequencies where thermalization and diffusion take pla
these processes must occur at frequencies higher than
bandwidthDB of the filter function used in pulse processin
The bandwidth necessary to approach the optimal ene
resolution depends upon the frequency spectrum of the
nal and noise, which are determined by the response tim
the microcalorimeter and the effect of electrothermal fe
back. We first consider the required bandwidth of the fil
function and then discuss the limitations placed on the
sponse time of the microcalorimeter by the diffusion time
the thermometer.

In order to discuss the required bandwidth of the filter
is necessary to consider the sources of noise in the sen
The fundamental noise sources in a TES microcalorime
are the phonon noise~thermodynamic power fluctuations! of
the thermal conductanceG connecting the microcalorimete
to the heat bath and the Johnson current noise of the T
Although both of these noise sources are strongly freque
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dependent, in the strong-feedback limit their quadrature s
depends only weakly on frequency. In particular, the pow
spectral density of the quadrature sum of Johnson and
non noise of the TES in the strong-feedback limit is2

SI5
4kT0

R0

n/21v2teff
2

11v2teff
2 , ~2!

whereR0 is the resistance of the sensor at equilibrium andv
is the angular frequency. Since typicallyn;4, we may as-
sume to a rough approximation that the noise in the sens
white.

In the presence of white noise, the Wiener optimal fil
has the same bandwidth as the signal,1 and the required filter
bandwidth isDB'1/(2pteff). Diffusion in the TES must
occur at frequencies higher than the required filter bandw
to avoid degradation in energy resolution, so the characte
tic diffusion time in the thermometer must be somewh
shorter thanteff . However, this result is only valid in the
strong-feedback limit. When little electrothermal feedback
used, the quadrature sum of the noise sources have a s
frequency dependence. In this case, the required filter b
width can be hundreds of times larger than the bandwidth
the signal, and the diffusion time in the TES must be hu
dreds of times shorter thanteff .

3 Strong negative electrother
mal feedback must be used for the response time to appr
the diffusion time in the TES.2

While diffusion times in the TES cannot in general
made as fast as diffusion times in the absorber, it is poss
to design thermometers with diffusion times faster than 1ms
by making the area small enough and the film mean-free p
long enough. For example, choosing reasonable detecto
rameters,v f5106 m/s, l̄ 5100 nm, and a diffusion length
L5100mm, we arrive at a characteristic diffusion time
the sensor oftdiff'0.1ms. The detector response time c
thus be of order 1ms without sacrificing energy resolution
Note that such a sensor would have a normal resistanc
about 30 mV per square, so a low circuit inductance wou
be required for fast operation, as will be discussed in follo
ing sections.

IV. ELECTRICAL STABILITY

Another constraint on the response time of a TES mic
calorimeter is imposed by the electrical bias circuit. If t
inductance in the bias circuit is too large, a phase shift in
electrically-induced thermal response of the sensor can
to oscillations.9 In this section we describe the electrical bi
circuit, calculate the effective electrical impedance of t
TES, use this impedance to determine the condition for e
trical stability, and discuss the constraint this condition i
poses on the response time of TES microcalorimeters f
given circuit inductance.

The thermal response of the TES can by modeled by
effective electrical impedanceZ(v) which is independent o
the bias circuit.13 The differential equation governing th
temperature of the transition-edge sensor is

C
dT

dt
5IV2K~Tn2Tb

n!, ~3!
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where I is the current flowing through the sensor,V is the
electrical potential across the sensor,K is a material and
geometry dependent parameter,T is the temperature of the
sensor, andTb is the temperature of the heat bath. The fi
term on the right-hand side of Eq.~3! represents the Joul
power dissipation in the sensor and the second term
scribes the flow of heat to the heat bath. In the limit thatTb

is close toT, the last term reduces to the familiar form
2GDT, where the differential thermal conductanceG
[dP/dT5nKTn21, and DT[T2Tb . In formulating Eq.
~3!, we assume that all the equilibration times within t
absorber and thermometer are fast compared to the gl
thermal response time and that self-heating leads to ne
gible temperature gradients in the device, so the absor
thermometer system is at a uniform temperatureT. If this
condition were not true, the full thermal circuit model wou
have to be used, and the conditions for stability would be
higher order than quadratic.

In order to derive an effective electrical impedance,
expand Eq.~3! to first order around an equilibrium temper
ture and consider one Fourier componentv,

ivCT~v!5I 0V~v!1V0I ~v!2GT~v!, ~4!

whereI 0 andV0 are the equilibrium current and voltage. A
will be discussed later, the resistance of the TES,R[V/I ,
can be a hysteretic function of temperature, applied curr
and applied magnetic field. For the purposes of this sim
calculation, we assume a low-current and low-field limit, a
treat the resistance as a nonhysteretic function of temp
ture,R5R(T). In this case,

V~v!5I 0R~v!1R0I ~v!5
aV0T~v!

T0
1R0I ~v!. ~5!

Combining Eqs.~4! and ~5! and settingv50, we arrive at
the zero frequency impedance

Z0[Z~0!5
V~0!

I ~0!
52R0

f1n/a

f2n/a
, ~6!

where, as previously,f[12(Tb /T0)n. The frequency de-
pendent electrical impedance of the TES is13

Z~v!5Z0

11 ivt~Z01R0!/2Z0

11 ivt~Z01R0!/2R0
. ~7!

The total impedance seen by the voltage source is
sum of the internal impedance of the voltage source,
effective electrical impedance of the TES, the inductance
the input coil of the SQUID, and any stray impedance.
practice, the internal impedance of the voltage source ca
made very small, so that only stray inductances and the
ductance of the input coil are important. The total impedan
seen by the voltage source is then

Ztot~v!5Z0

11 ivt~Z01R0!/2Z0

11 ivt~Z01R0!/2R0
1 ivL, ~8!

whereL5LSQUID1Lstray.
We now consider the condition for electrical stability.

the zeros ofZtot(v) are complex, the device response is o
cillatory. If the zeros are in the right half of the comple



ar
, t
e
ls
at
ll

n

n

im
e

o

ta

pl
-
th
a
o
e

an

r
so

o
tu
th

th
b

w
is

o
u

lly

ul-

the
ise

f a
ad-

e
onse

v-
lo-
the
se

the

ns

uc-

th
out
cal
ra-
t on

on
ise
e is
and

-
ES
i-
uce
s.

3981J. Appl. Phys., Vol. 83, No. 8, 15 April 1998 Irwin et al.
plane, the oscillations grow, whereas in the left they
damped. When the zeros come together on the real axis
oscillations are critically damped. In practice, even damp
oscillations present difficulties in device operation and pu
processing, and TES microcalorimeters are usually oper
in a critically damped regime. We present here the critica
damped solution.

The zeros of Eq.~8! come together on the real axis whe

t

telec
5

C/G

L/R
5

4Z022R024AZ0~Z02R0!

R01Z0
, ~9!

wheretelec[L/R is the electrical response time of the se
sor. Substituting Eq.~6! into Eq. ~9!, we arrive at

t

telec
53f

a

n
1112&AS f

a

n
11Df

a

n
. ~10!

This condition imposes a constraint on the response t
of TES microcalorimeters. In the strong-feedback limit, w
takea@n andf'1 so that Eq.~10! reduces to

tn/a

telect
5

teff

telec
5312&'5.8 ~11!

so that in the strong-feedback limit, the critical damping
oscillations requires that the effective response time be
least 5.8 times longer than the time constantL/R. Thus, the
response time is dependent on the inductance and resis
of the electrical circuit.

V. AMPLIFIER NOISE

In this section we discuss the constraint that the am
fier noise places on theL/R time constant. In order to ap
proach the optimal energy resolution, it is important that
current noise of the SQUID referred to its input be less th
the current noise of the TES; if the SQUID noise is n
smaller, the energy resolution of the detector will be d
graded. We consider the current noise of the TES
SQUID, develop a constraint on theL/R time constant, and
finally estimate the achievable electrical response time fo
stable TES microcalorimeter with near-optimal energy re
lution.

According to the theory,1 the total TES noise is due t
the phonon current noise in the sensor added in quadra
with the electrical Johnson current noise of the sensor. In
strong-feedback limit, the theoretical current noise of
sensor is dominated by the phonon noise at frequencies
low the thermal response frequency. The current noise po
spectral density~PSD! below the thermal knee frequency
approximately white, with value2

SI ~TES!'
4kBT

R0

n

2
, ~12!

where kB is Boltzmann’s constant andn is the thermal-
conductance exponent.

The input inductanceLSQUID of the SQUID current am-
plifier can by adjusted by changing the number of turns
the input coil. The current noise referred to the SQUID inp
is a function of the input coil inductance and is typica
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parametrized by a coupled energy sensitivity of some m
tiple j of Planck’s constantLSQUIDSI (SQUID)/25jh, so that

SI ~SQUID!5
2jh

LSQUID
. ~13!

For typical SQUIDs,j510 to 1000.
For the purposes of this calculation, we assume that

SQUID noise is low enough compared to the TES no
whenSI (SQUID) is less than half ofSI (TES), leading to a maxi-
mum degradation in energy resolution of about 20%. I
smaller degradation is required, the calculation can be
justed accordingly. Using Eqs.~12! ~in the zero frequency
limit ! and~13! and settingSI (SQUID),SI (TES)/2 yields a mini-
mum SQUID-input-coil inductance of

LSQUID.
2jhR0

nkBT0
. ~14!

If the SQUID is placed close to the TES~perhaps even on the
same chip!, the inductance of the input coil can be larg
compared to any stray inductance, and the electrical resp
time of a properly matched circuit isLSQUID/R0

.2jh/nkBT0 .
Combining the amplifier noise constraint of Eq.~14! and

the condition for electrical stability, we estimate the achie
able response time for a critically-damped TES microca
rimeter operated near the optimal energy resolution. In
strong-feedback limit, electrical stability requires a respon
time greater than 5.8 times the electrical time constant@Eq.
~11!#, so the amplifier noise restricts the response time of
SQUID to

teff.
11.6jh

nkBT0
. ~15!

For example, assumingj5500, operation atT50.1 K, and
n54, the critical-damping and noise-matching conditio
lead to an electrical time constantteff.0.7ms. A faster re-
sponse time may be achieved by reducing the input ind
tance~or increasing the TES resistance! at the price of a loss
in energy resolution. Alternatively, the use of SQUIDs wi
better energy sensitivity allows faster response times with
sacrificing energy resolution. The noise matching and criti
damping conditions are more stringent at lower tempe
tures. Thus, the required response time may place a limi
how cold a microcalorimeter can be operated, and hence
the energy resolution. Note that the limit that amplifier-no
and critical-damping conditions place on the response tim
independent of both the resistance of the thermometer
the heat capacity of the detector.

VI. CRITICAL CURRENT

The critical current of the superconducting film also im
poses a constraint on the response time of a T
microcalorimeter.6 In this section, we discuss the compl
cated nature of the superconducting transition and introd
a two-fluid TES transition model to simplify calculation
We then develop an equation for the Ginzburg–Landau~GL!
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critical current of a BCS superconductor in terms of app
priate parameters and use it to derive the critical-current c
straint on the response time.

Usually, the theory of TES microcalorimeters assum
that the electrical resistance in the superconducting-nor
transition region,R[V/I 5R(T), is a simple function of the
temperature. More generally, the resistance is a function
temperature, applied current, and applied magnetic field.
transition can be hysteretic. At low applied field and curre
the form of the transition can be influenced by film nonu
formities, magnetic fields, and nonequilibrium effects ne
superconducting-normal interfaces. Even if the superc
ductor is perfectly uniform and negligible current is carrie
the transition will have a nonzero width due to phase-s
events induced by thermal fluctuations.14 At nonzero applied
currents, a voltage can be generated across a uniform,
thermal superconducting film by a current flow near the cr
cal current. In this section, we consider the last mechani
and the limitation it imposes on the response time. While
may be desirable to fabricate a detector which is limited
other factors, such as geometric variations in transition te
perature, the critical current still places a lower limit on t
detector response time.

The form of a transition induced by a current flow ne
the critical current depends on whether the film is Typ
~where the Ginzburg–Landau parameterk,1/&! or Type II
(k.1/&). In a Type II superconducting film, the voltage
caused by the motion of quantized vortices. Unfortunately
most Type II superconducting films~depending on correla
tions in the vortex lattice!, vortex motion can introduce cur
rent noise larger than the Johnson noise in the film.15,16 Fur-
ther, since the Ginzburg–Landau parameter is invers
proportional to the mean-free path in dirty superconducto
thermometers with long mean-free paths and thus fast d
sion times will tend to be Type I. For the purposes of th
discussion, the use of a Type I film is assumed.

In a Type I superconducting film, the voltage is pr
duced by phase-slip events in one or more phase-slip l
~PSLs! in the film.17,18 Depending on the geometry of th
film, this regime may be characterized by steps in theI –V
curve associated with the nucleation of PSLs where the lo
critical current is exceeded. Operation in this regime can
complicated due to the presence of PSL-nucleation featu
Apart from these steps, changes in the resistance of the
are caused by the temperature dependence of the critical
rent and, to a lesser extent, by the weak temperature de
dence of the charge-imbalance relaxation lengthLQ* in the
superconducting film.19 In the successful Skocpol–Beasley
Tinkham ~SBT! model17 of a Type I superconductor, th
voltage is V52NrlLQ* (T)@ I 2bI c(T)#, where N is the
number of PSLs,rl is the normal resistance per unit leng
of the superconductor, andb[ Ī c /I c is the ratio of the time-
averaged critical current in the PSLs to the critical curren
the film ~typically about 0.5!.

For the purposes of this calculation, we introduce
model which is similar in form to SBT, but simpler and mo
amenable to computation. The two-fluid transition mod
separates the sensor currentI (T) into a supercurrent compo
nent which is always some fractioncI of the Ginzburg–
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Landau critical current of the filmI c(T) and a quasiparticle
component equal to the voltageV divided by some fraction
cR of the normal resistanceRn :

I ~T!5cI I c~T!1V/~cRRn!. ~16!

The two-fluid transition model neglects the weak tempe
ture dependence ofLQ* , but otherwise reduces to the SB
model whencI5b andcR52NrlLQ* /Rn . Results derived
with this formula should be roughly accurate and sho
have the proper scaling with respect to parameters suc
the heat capacity and normal resistance.

In order to apply the two-fluid transition model, we mu
know the critical current of the sensor as a function of te
perature. We assume that the sensor is a simple BCS su
conductor that behaves in accordance with Ginzbu
Landau ~GL! theory near the transition temperatur
Combining the standard GL results for critical current de
sity Jc with BCS results nearTc for critical field and effec-
tive penetration depth,20 we arrive at the following expres
sion for critical-current density:

Jc~T!'1.54
Hc~0!

lL~0!
A l̄

j0
~12t !3/2. ~17!

HereHc(0) is the BCS thermodynamic critical field at abs
lute zero,lL(0) is the London penetration depth at ze
temperature,l̄ is the mean-free path in the film,j0 is the
BCS coherence length, andt[T/Tc is the reduced tempera
ture.

The BCS critical field is20

m0Hc~0!5D~0!Am0N~0!, ~18!

whereD~0! is the energy gap parameter at zero temperat
m0 is the permeability of free space, andN(0) is the density
of states.

The London penetration depth is lL(0)
5Am* /(m0ns* e* 2), wherem* is the effective mass of the
pair,ns* is the density of pairs, ande* is the effective charge
of the pair. We takem* /(ns* e* 2)'me /(nee

2), whereme ,
ne , ande are the corresponding free-electron mass, dens
and charge. Using the London penetration depth, the B
expression for coherence lengthj0'0.18\v f /kBTc , the
free-electron model for the normal-electron resistivityrN

5mev f /(nee
2l̄ ), and Eqs.~17! and ~18!, we arrive at

Jc'6.39~kBTc!
3/2AN~0!

\rN
~12t !3/2. ~19!

This equation may be put in a more suggestive form
converting current density to current, resistivity to resistan
and using the free-electron expression for the heat capa
of the normal-electron system in the thermometer,Cn

5p2N(0)kB
2TcU/3, whereU is the volume of the supercon

ductor. Although experimental determinations of heat cap
ity vary from this expression by factors of 2 due to variatio
in effective mass, the scaling achieved by using this equa
should be correct. Assuming that the film has a uniform cr
section, we arrive at
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I c'3.52AkBCn

\Rn
Tc~12t !3/2, ~20!

an equation for the GL critical currentI c of a BCS supercon-
ductor free of microscopic parameters, in terms of
normal-electron heat capacity, normal electrical resista
Rn , transition temperature, and reduced temperature.

Achieving the theoretical critical current can be difficu
Ambient magnetic fields and nonuniformities of current flo
in the film can significantly reduce the critical current. Wi
careful magnetic shielding and the use of a superconduc
ground plane to make the current flow uniform, howev
approaching the theoretical GL critical current with a BC
superconducting film has been possible.20

We now estimate the response time using the calcula
GL critical current and the two-fluid transition model. In th
past, most theory has assumed that the electrical resistan
a simple function of temperatureR5R(T). In the two-fluid
transition model, the resistanceR[V/I is a function of volt-
age and current, and the current is a function of tempera
and voltageI 5cI I c(T)1V/(cRRn). Therefore, at constan
voltage bias, the resistance in the two-fluid transition mo
reduces to a simple function of temperature,

R5R~T!5
V

cII c~T!1V/~cRRn!
, ~21!

and the theory previously developed for the detector
sponse is valid. Note that it is difficult to directly compa
the theoretical transition shape in Eq.~21! to experimental
values since it is difficult to unambiguously determine t
temperature of a voltage-biased sensor in the stro
feedback limit. However, preliminary comparison of detec
performance in the critical-current limited regime agre
qualitatively with the predictions based on this formula.

The first step in estimating the response time in the tw
fluid transition model is to calculate the logarithmic sensit
ity of the film a[d log R/d log T at constant voltage. As
suming that the film temperature is close to the transit
temperature so that the GL critical currentI c(T)5I c0(1
2T/Tc)

3/2 applies, and using Eq.~21!, we calculate

a5
3

2 F ~cRRn2R0!cI
2I c0

2 R0

cRRnP0
G1/3

, ~22!

whereR0 is the resistance at equilibrium, and the equilibriu
Joule Power,P05V2/R0 , is a constant throughout the na
row transition in the strong-feedback limit. The detector
optimally biased whena is maximized~and the response
time is minimized!. Equation~22! is a maximum whenR0

5cRRn/2, so the maximuma is

aMAX 5
3

4 S 2cI
2I c0

2 cRRn

P0
D 1/3

. ~23!

Further, usingP05GT0f/n, T0'Tc in the strong-feedback
limit, and Eq.~20! for I c0 , we calculate

aMAX'2.19S kbTc

\

Cn

G

n

f
cRcI

2D 1/3

. ~24!
e
e

ng
,

d

e is

re

l

-

g-
r
s

-
-

n

High values ofaMAX can be achieved with reasonable dete
tor parameters. For example, taking soft x-ray detector
rametersCn51 pJ/K, G51 nW/K, Tc50.1 K, f51, and
n54, and assumingcR51 andcI50.5, we computeaMAX

;500.
From Eq. ~1!, when voltage biased, the effective tim

constant of the film isteff't0 /(11af/n), wheret05Ctot /G
is the natural time constant of the microcalorimeter andCtot

is the total heat capacity of the thermometer and absor
Just below the transition, BCS superconductors have a
capacity approximately 2.43 times the value of the norm
metal.20 Using Eq.~24!, we arrive at an expression for th
minimum effective time constant of a TES microcalorime
in the strong-feedback, critical-current-limited two-flu
transition model:

tMIN'0.46S t0
2 Ctot

Cn

\

kBTc

n2

f2

1

cRcI
2D 1/3

. ~25!

There are several important observations to make ab
Eq. ~25!. First, the minimum time constanttMIN is indepen-
dent of the electrical resistance. Second, the minimum
sponse time due to the critical current is independent of
saturation energy. The saturation energy of the microca
rimeter is proportional toCtotTc /a. But the logarithmic sen-
sitivity a and the minimum response time of the sensor
both independent of the total heat capacity as long as
natural time constant is held fixed~by increasingG asCtot is
increased! and the ratioCtot /Cn is held fixed~by increasing
the size of the thermometer by the same ratio as the siz
the absorber.! Since Eq. ~25! is derived in the strong-
feedback limit, it should be noted that these observations
only valid for aMAX @n/f.

The two-fluid transition model critical current is consi
tent with 1 ms microcalorimeter response time for a BC
superconductor in the strong-feedback, GL limit. For e
ample, choosingt0525ms, Ctot /Cn54, Tc50.1 K, f51,
n54, cR51, and cI50.5, from Eq. ~24! aMAX;100 and
from Eq. ~25! tMIN;1 ms.

VII. SELF HEATING

Joule heating in a transition-edge thermometer can ca
a temperature variation across the film, reducing the se
tivity of the thermometer and affecting the response tim
The effects of self heating are dependent on the thermal c
ductances and geometry of the detector and the form of
superconducting transition. In the general case the effect
self heating must be analyzed numerically. Instead of a
tailed analysis of a specific geometry, we present a sim
calculation to show how self-heating constraints scale an
demonstrate that self heating does not place a fundame
limit on the response time.

For the purposes of this analysis, we model a tra
ition-edge sensor as two isothermal elements at differ
temperatures connected by a thermal conductance. Near
mK, this thermal conductance is dominated by t
Wiedemann–Franz thermal conductance of the nor
electrons,GWF5LnT/Rn , where the Lorentz numberLn

'24.5 nWV K22. We make the worst-case assumption th
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the entire detector bias powerP is dissipated in the firs
element, flows to the second element, and then esc
through a thermal conductanceG to a heat bath. The tem
perature drop across the film is thenDT5P/GWF.

The characteristic transition widthDTchar associated
with a logarithmic sensitivitya is of orderDTchar;Tc /a. As
a rough estimate, self heating will not limit detector perfo
mance when the temperature drop associated with self h
ing is smaller than this characteristic transition width,
when P/GWF,Tc /a. When the heat bath is cooled to we
below the equilibrium sensor temperature, the equilibri
power P'GT0 /n, so to avoid self heating we requireGWF

.Ga/n. SubstitutingGWF5LnT/Rn , we calculate

Rn,
LnT0

G S n

a D . ~26!

Thus, if the normal resistance of the TES is low enough,
heating is negligible. For instance, consider a typical x-
microcalorimeter withG51 nW/K, T050.1 K, n54, and
a5100. Then, from Eq.~26!, self heating should not be
important as long asRn,0.1V.

The self heating in a TES is unimportant if its norm
resistance is low enough. Since the limits on the respo
time due to electrical stability, amplifier noise, and critic
current are independent of the resistance~as long as the in-
ductance scales accordingly!, in principle the resistance ca
always be lowered enough to make self heating negligib

VIII. CONCLUSIONS

In order to optimize a TES microcalorimeter for a sp
cific application, careful detector design is required. In
TES microcalorimeter, the response time limitations we h
discussed couple the optimization for response time and
ergy resolution. Different applications will impose differe
optimization constraints, including the required absorber a
and quantum efficiency, the available heat bath tempera
the required response time, and the maximum photon ene
Since the constraints on optimization are different for ea
application, the development of a general optimization p
cedure is difficult. Instead, we present here a description
two possible detectors for use at different energies.

A number of detector design rules are suggested by
above calculations and are listed here.

~1! The diffusion times in the absorber should be ma
much shorter than the response time, or pulse shape v
tions should be corrected in the data analysis.

~2! Negative electrothermal feedback should be used
that the response time can be close to the diffusion time
the thermometer without sacrificing energy resolution.

~3! The response time should be sufficiently longer th
the L/R time constant for stable electrical operation@Eqs.
~10! and ~11!#.

~4! Stray inductances should be kept small compared
the SQUID input inductance.

~5! The SQUID must be quiet. The SQUID input indu
tance must be chosen so that the SQUID noise is sm
than the TES noise@Eq. ~14!#.
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~6! The critical current of the sensor should be ma
mized. A large volume superconducting film should be us
the heat capacity of the sensor should be a significant f
tion of the total microcalorimeter heat capacity@Eq. ~25!#.
Careful magnetic shielding and the use of a superconduc
ground plane may be necessary.

~7! Self heating should be minimized by keeping t
normal resistance of the TES small@Eq. ~26!#.

Although the minimum response time is in principle i
dependent of the saturation energy, achieving response t
near the limits described in this article is considerably ea
for detectors designed for low-energy photons. Consider
example a detector designed for response times of 1ms for
optical to near-infrared photons of order 1 eV. In such
detector, the TES itself could be used as the absorber.
suming the TES is a BCS superconductor and the respo
time is critical-current limited, if the natural time constant
t0535ms, CTOT /Cn(TES)'2.43~since the heat capacity of
BCS superconductor is about 2.43 times higher than a n
mal metal!, Tc50.1 K, f51, n54, cR51, and cI50.5,
from Eq. ~24! aMAX;125 and from Eq.~25! tMIN;1 ms. In
order to saturate near 1 eV, the heat capacity should
CTOT.EaMAX /Tc50.2 fJ/K. We will takeCTOT50.5 fJ/K.
Then to maintain a natural time constant of 35ms the thermal
conductance should beG;14 pW/K. In a sensor this small
diffusion times are fast enough to never be a limiting fact
To avoid self heating, the normal resistance of the T
should be Rn,LnT0n/(Ga);5V @Eq. ~26!#. We will
choose a normal resistance of 4V. To avoid electrical insta-
bility, the electrical response timeL/R must be faster than
170 ns@Eq. ~11!#. Assuming a bias resistance ofR052 V, a
total circuit inductance of less than about 340 nH is requir
which is easily achieved. Note that if a SQUID withj
5500 is used, the above detector-design procedure will
tomatically satisfy the amplifier noise condition@Eq. ~15!# as
long as the response time is slower than about 700 ns.
fundamental limit on the energy resolution of such a detec
would be2 about 30 meV FWHM.

A similar procedure can be used to design a detector
response times of 10ms for 6.4 keV FeKa x rays. Then
choosingt05700ms, CTOT /Cn(TES);5, Tc50.1 K, f51,
n54, cR51, and cI50.5, from Eq. ~24! aMAX;270 and
from Eq. ~25! tMIN;10ms. The heat capacity should b
CTOT.EaMAX /Tc52.7 pJ/K. We will takeCTOT54 pJ/K.
Then to maintain a natural time constant of 700ms the ther-
mal conductance should beG;6 nW/K. In this detector the
absorber heat capacity would correspond to a gold fi
250mm3250mm35 mm. The expected mean-free path in
high quality deposited film this thick would be;2 mm,
leading to a diffusion time in the absorber of order 22 n
which is short enough as compared to 10ms that pulse shape
variations will be small. To avoid self heating, the norm
resistance of the TES should beRn,LnT0n/(Ga)
,6.4 mV. We will choose a normal resistance of 4 mV. To
avoid electrical instability, the electrical response timeL/R
must be faster than 1.7ms @Eq. ~11!#. Assuming a bias resis
tance ofR052 mV, a total circuit inductance of less tha
about 3.4 nH is required. The amplifier-noise criterion is t
same as in the optical detector above, satisfied as longt
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.700 ns. A normal sheet resistance of 4 mV corresponds to
a TES film thickness of;1 mm, and dimensions of abou
300mm3300mm. A typical mean-free path in a TES o
these dimensions would be of order 150 nm, correspond
to a TES diffusion time of about 0.4ms, which is fast enough
for a 10 ms detector. The fundamental limit on the ener
resolution of such a detector would be2 about 1.6 eV
FWHM.

The fabrication of fast-response-time detectors for
eration at higher energies will be challenging. For the
ample above~a 6.4 keV x-ray detector!, the stray inductance
must to be small compared to the 3.4 nH SQUID input
ductance. In this case, it might be necessary to fabricat
ray detectors with on-chip SQUID preamplifiers or tran
formers. The use of superconducting ground planes m
also be necessary to reduce the inductance of the lines
tween the detector and the SQUID. While it is in princip
possible to make 6.4 keV detectors which operate at 1ms,
the total circuit inductance would then have to be less t
100pH, which would be very difficult to achieve.

We have shown that diffusion times, electrical stabili
amplifier noise, and critical current place a lower limit on t
response time of a TES microcalorimeter. These constra
are more stringent at lower temperatures. The response-
limit is of order 1ms for a BCS superconductor operating
0.1 K. The response time must be slower when operated
optimal resolution at temperatures below 0.1 K. With prop
design and large enough Wiedemann–Franz thermal con
tances, self heating does not limit the response time.
response time is independent of the intended photon en
for fixed natural time constant, but constraints on the to
circuit inductance become more difficult for fast response
higher energies.

As previously mentioned, a response time of 8ms has
been demonstrated for a low-heat-capacity microcalorim
appropriate for optical photons.6 The response time of thi
device was limited by instabilities due to a total circuit i
g
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ductance which was too large. A response time of about
ms has been demonstrated for a 6 keV x-ray detector, which
was limited by a slow natural time constant and a film cr
cal current which was significantly worse than the theoreti
GL value for a BCS superconductor.5 It should be possible to
fabricate detectors with considerably faster response ti
than has been achieved to date.
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